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Abstract:  

 

Right here, a way for developing new metrics for intuitionistic fuzzy M-distance 

(divergence) is suggested. A opportunity distribution's distance from 𝑃 = 𝑝1,…,𝑛 to some 

other chance distribution 𝑄 = 𝑞1,…,𝑞𝑛 is measured the use of the M-distance (divergence) 

metric when the chances in each distributions are monotonically growing or monotonically 

lowering. Within the discipline of picture segmentation, the intuitionistic fuzzy M - distance 

(divergence) metric has an expansion of makes use of. The suggested answer additionally 

separates and minimizes the imperfect and best threshold pix. 
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1. Introduction: 

Information theory (IT) become evolved by means of Shannon [15] in 1948 as a new vicinity of 

mathematics and a powerful tool for comprehending the complexities of conversation. Renyi [13] 

took the initiative and generalized the Shannon degree because of the Shannon degree's 

restrictions in a few circumstances. Following Renyi, severa generalized metrics for various 

circumstances have been developed. The degree of discrimination between opportunity 

distributions—one ideal and the other determined—became developed with the aid of Kullback 

and Leibler [10]. Within the final decades of the twentieth century, there has been a considerable 

expansion of the frame of literature on divergence measures. 

Generalized statistics and divergence measurements have been evolved, according to Besseville 

[4], Esteban, and Morales [9]. Studies and development in the discipline were revolutionized by 

Zadeh's [20] introduction of the idea of fuzziness. The degree of fuzzy entropy that corresponds 

to Shannon's [1] measure of entropy was hooked up through De-Luca and Termini [8]. 

 

1.1. Divergences for fuzzy sets: 

To quantify the difference between fuzzy units, several measures were advanced [4], [6], and 

[20] other than that, in 2023 Verma [18, 19] additionally evolved some new concepts concerning 

this.even as a specific situation turned into substantially investigated in [20], wherein an 

axiomatic formula of a divergence [14] measure for fuzzy units changed into brought, a complete 

take a look at at the comparison of fuzzy sets was provided in [6]. It changed into primarily based 

on the following characteristics of nature. 

(𝑖) it's far a symmetric, nonnegative characteristic of the 

two fuzzy units (i). (𝑖𝑖) A fuzzy set has zero divergence with 

itself. 

(𝑖𝑖𝑖) The divergence among fuzzy sets decreases the "more similar" they're. the subsequent formal 

description applies to these characteristics. 

Definition 1.2 (found in [20]):  

Consider the universe 𝑋. If each pair of fuzzy sets 𝐴 and 𝐵 meets the requirements, then the map 

𝐷: 𝐹(𝑋) × 𝐹𝑆(𝑋) → 𝑅 is a divergence measure. 
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Div.1: (𝐴, 𝐵) = 𝐷(𝐵, 𝐴). 

Div.2: (𝐴, 𝐴) = 0. 

Div.3: (𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) ≤ 𝐷(𝐴, 𝐵), for every 𝐶  ∈ 𝐹𝑆(𝑋). 

Div.4: (𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶) ≤ 𝐷(𝐴, 𝐵), for every 𝐶  ∈ 𝐹𝑆(𝑋). 

The preceding axiomsdo notdemand that the divergence benon-terrible. The axioms Div.2andDiv.3 

(or Div.2 and Div.4) can be used to without difficulty deduce it. Measurements of fuzzy entropy 

equivalent to Renyi [13] entropy and measurements of fuzzy directed divergence equal to Kullback 

Leibler [10] divergence degree have been defined with the aid of De-Luca and Termini [8]. The frame 

of expertise approximately the introduction of divergence metrics has grown substantially in current 

years. Fuzzy data and 

divergence measurements have been surveyed with the aid of De-Luca and Termini [8]. Here, we use 

threshold, a nicely-preferred image segmentation method, to extract the items from a photo. The edge 

values for segmentation can be selected on the multimodal histogram's valley points if the items can 

be without difficulty distinguished from the historical past. To maximize the class separatability, which 

become based on within-magnificence version, between-elegance variance, and total variance of grey 

stages, Otsu [12] selected the threshold. The literature reports numerous tremendous investigations on 

various thresholding strategies. Statistics-theoretic metrics have been used by Verma [17] and Kapur 

et al. [11], breaking point and Pendcock [5] to threshold a photograph. 

1.3. Intuitionistic fuzzy sets: 

IFSs model situations wherein each point in the universe is given a degree of membership and a stage 

of non-participation. For that reason, Atanassov provided the subsequent description of an IFS (see 

[1]): 

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥))| 𝑥  ∈ 𝑋} 

Where 𝜇𝐴 and 𝜈𝐴 signify the degree of membership and non-membership of the element to the set, 

respectively, and 0 ≤ 𝜇(𝑥) + 𝜈𝐴(𝑥) ≤ 1 is a function of 𝜇𝐴, 𝜈𝐴: 𝑋 → [0, 1]. The function 𝜋(𝑥) = 1 − 

𝜇𝐴(𝑥) − 𝜈𝐴(𝑥), also known as the intuitionistic fuzzy index or the hesitant index, denotes ignorance 

regarding membership in A. We may occasionally refer to 𝐴 = (𝜇𝐴, 𝜈𝐴) as just 𝐴 when there is no 

possibility of a mistake. 

The comparable representation of IF-sets [2, 3] is an interval-valued set, where each element's 𝑥 

∈ 𝑋 corresponding interval is [𝜇(𝑥), 1 − 𝜈𝐴(𝑥)]. It implies that the interval includes the element's 

real degree of set membership as a result. The breadth of the interval matches the hesitancy index. 

https://scienxt.com/
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We can think of a fuzzy set 𝐴 on 𝑋 as an IFS with non-membership degree 1 − 𝐴 and 𝜋𝐴 = 0. Therefore, 

if 𝐹(𝑋)= set of all fuzzy sets on X and 𝐼𝐹𝑆𝑠(𝑋) = set of all IFSs on 𝑋, then 𝐹𝑆(𝑋) ⊂ 𝐼𝐹𝑆𝑠(𝑋). 

For 𝐴, 𝐵 ∈ 𝐼𝐹𝑆(𝑋), the union, intersection, complement, inclusion, and inclusion 

relations are defined.  

(𝑖) Union of 𝐴 and 𝐵:  

𝐴 ∪ 𝐵 = {(𝑥, 𝜇𝐴∪𝐵(𝑥), 𝜈𝐴∪𝐵(𝑥))| 𝑥 ∈ 𝑋} where 𝜇𝐴∪𝐵(𝑥) = max{𝜇𝐴(𝑥), 𝜈𝐴(𝑥)} and 

𝜇𝐴∪𝐵(𝑥) = min{𝜈𝐴(𝑥), 𝜈𝐵(𝑥)}. 

(𝑖𝑖) Intersection of 𝐴 and 𝐵: 

𝐴 ∩ 𝐵  = {(𝑥, 𝜇𝐴∩𝐵(𝑥), 𝜈𝐴∩𝐵(𝑥))| 𝑥 ∈ 𝑋}where 𝜇𝐴∩𝐵(𝑥) =  

min {𝜇𝐴(𝑥), 𝜈𝐴(𝑥)} and 𝜇𝐴∩𝐵(𝑥) = 

max {𝜈𝐴(𝑥), 𝜈𝐵(𝑥)}. 

(𝑖𝑖𝑖) Complement of 𝐴: 𝐴𝑐 = {(𝑥, 𝜈(𝑥), 𝜇𝐴(𝑥))| 𝑥 ∈ 𝑋}. 

(𝑖𝑣) 𝐴 is a subset of 𝐵 (denoted by 𝐴 ⊆ 𝐵) if and only if for every 𝑥 ∈ 𝑋 it holds that 𝜇(𝑥) ≤ 𝜇𝐵(𝑥) and 

𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥). 

1.4. Divergence measures for intuitionistic fuzzy sets: 

We define a measure of comparison between two IFSs axiomatically. We first present the axioms 

and observe how distances, IF-divergences, and IF-dissimilarities relate to each other. Then, we 

givevariousIF-divergencesand IF- dissimilarities times,aswell assomefundamentalproperties 

and construction techniques for IF-divergences. To degree the variations between IFSs, severa 

features have been published inside the literature [6, 7] aside from that, in 2023 Verma [16] also 

advanced a few new standards regarding this. The maximum common ones are variations. 

Remember the fact that an IFSs dissimilarity degree, or IF-dissimilarity for short, is a feature𝐷 

from 𝐼𝐹𝑆(𝑋) × 𝐼𝐹𝑆𝑠(𝑋) to 𝑅 that satisfies the following standards for each 𝐴,𝐵,𝐶 ∈ 𝐼𝐹𝑆𝑠(𝑋): 

IF-Diss.1: (𝐴, 𝐵) = 𝐷(𝐵, 𝐴). 

IF-Diss.2: (𝐴, 𝐴) = 0. 

IF-Diss.3: 𝐴 ⊆ 𝐵 ⊆ 𝐶, then (𝐴, 𝐶) ≥ max(𝐷(𝐴, 𝐵), 𝐷(𝐵, 𝐶)). 

The literature has a few instances of dissimilarity metrics. In reality, [6, 7] provides an outline. 

Some of these comparisons have limitations because there are cases in which such differences 

lead to paradoxical metrics for IFSs. Consider, for instance, Chen's definition of the dissimilarity 

[6, 7] and the universe = {𝑥1, …, 𝑥𝑛} : 

https://scienxt.com/
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𝑛 
1 

𝐷(𝐴, 𝐵) = 
2𝑛   

∑|𝑆𝐴 (𝑥𝑖 ) − 𝑆𝐵(𝑥𝑖)| 

𝑖=1 

𝑆(𝑥𝑖) = |𝜇𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)| and 𝑆𝐵(𝑥𝑖) = |𝜇𝐵(𝑥𝑖) − 𝜈𝐵(𝑥𝑖)| respectively. 𝐷𝐶(𝐴, 𝐵) = 0 for this 

dissimilarity measure whenever  𝑆𝐴(𝑥𝑖) = 𝑆𝐵(𝑥𝑖)  for  all  𝑖  = 1, … , 𝑛.   In   reality,   the   

dissimilarity between them is zero if 𝜇(𝑥𝑖) = 𝜈𝐴(𝑥𝑖) = 0 and 𝜇𝐵(𝑥𝑖) = 𝜈𝐵(𝑥𝑖) = 0.5 for all 𝑖 = 1, 

… , 𝑛. The two sets, however, are distinctly different. 

To avoid such absurd circumstances, a measure of contrast must be delivered that has stronger 

houses than dissimilarities. An IF- divergence may be defined as a measure of distinction that should 

fulfill the subsequent rational houses, which is the identical concept as fuzzy divergences. 

(𝑖) the two IF-units are measured by this nonnegative, symmetric quantity.  

(𝑖𝑖) An IF-set has 0 IF-divergence with itself.  

(𝑖𝑖𝑖) The IF-divergence between two IF-units decreases as they come to be "more" just like each 

other.  

(𝑖𝑣) The IF-divergence turns into a divergence for fuzzy units.  

Formally, the following axiomatic definition describes the concept of a divergence degree for 

IFSs. 

DEFINITION 1.5: 

Assuming 𝑋 is a finite universe, 𝐼𝐹𝑆(𝑋) is the collection of all 𝐼𝐹𝑆𝑠 on 𝑋. If a map 𝐷𝐼𝐹: 𝐼𝐹𝑆(𝑋) × 

𝐼𝐹𝑆𝑠(𝑋) → 𝑅 has the properties listed below for any 𝐴, 𝐵 ∈ 𝐼𝐹𝑆𝑠(𝑋), it is an 𝐼𝐹𝑆𝑠 divergence measure 

(also known as an IF-divergence). 

IF-Diss.1: 𝐷𝐼(𝐴, 𝐵) = 𝐷𝐼𝐹(𝐵, 𝐴). I 

F- Diss.2: 𝐷𝐼(𝐴, 𝐴) = 0. 

IF-Div.3: 𝐷𝐼(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) ≤ 𝐷𝐼𝐹(𝐴, 𝐵), for every 𝐶 ∈ 𝐼𝐹𝑆𝑠(𝑋).  

IF-Div.4: 𝐷𝐼(𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶) ≤ 𝐷𝐼𝐹(𝐴, 𝐵), for every 𝐶 ∈ 𝐼𝐹𝑆𝑠(𝑋). 

 

2. Our results: 

2.1. The first measure of m-divergence metric in intuitionistic fuzzy setting: 

The first such measure is defined by 

https://scienxt.com/
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( −) ln ( ) 

subject to 𝜇𝐵(𝑥1) < 𝜇𝐵(𝑥2) < ⋯ < 𝜇𝐵(𝑥𝑛) and 𝜈𝐵(𝑥1)  <  𝜈𝐵(𝑥2)  <  ⋯  <  𝜈𝐵(𝑥𝑛).  

Also, 𝜇(𝑥1) < 𝜇𝐴(𝑥2) < ⋯ < 𝜇𝐴(𝑥𝑛) and 𝜈𝐴(𝑥1) < 𝜈𝐴(𝑥2) < ⋯ < 𝜈𝐴(𝑥𝑛). Now, 

𝐷 = ln  + 
ln(    ) 

− ln( ) 

𝜕𝜇     𝑥1) ( 𝐵(𝑥1) 

and 

𝜈(𝑥1) 𝜇(𝑥2)−𝜇𝐵(𝑥1) 𝜈(𝑥2)−𝜈𝐵(𝑥1) 

(     ) ( ) 

https://scienxt.com/
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𝐴    1 𝐴    1 𝐴     1 𝐴    2 𝐴    1 𝐴    1 𝐴    2 𝐴 1 

1 

𝐴    2 𝐴     2 𝐴    2 𝐴    1 𝐴    2 𝐴    1 𝐴    3 𝐴    2 𝐴    3 𝐴 2 

 

𝜕𝜇 ( ) 
(𝜕𝜇 (𝑥 )

) = 𝜇 (𝑥 ) 
+ 𝜇 (𝑥 )−𝜇 (𝑥 ) 

+ 𝜈 (𝑥 ) 
+ 𝜈 (𝑥 )−𝜈 (𝑥 ) 

> 0
 

 

similarly 

  𝜕𝐷1   = ln
     𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)  𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1) 𝜇𝐴(𝑥3)−𝜇𝐴(𝑥2)  𝜈𝐴(𝑥3)−𝜈𝐴(𝑥2) 

𝜕𝜇𝐴(𝑥2) 𝜇𝐵(𝑥2)−𝜇𝐵(𝑥  +)    ln 𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1)− ln    𝜇𝐵(𝑥3)−𝜇𝐵(𝑥2)− ln   𝜈𝐵(𝑥3)−𝜈𝐵(𝑥2) 

and 

 

𝜕𝜇 (𝑥 ) 
(𝜕𝜇 (𝑥 )

) = 𝜇 (𝑥 )−𝜇 (𝑥 ) 
+ 𝜈 (𝑥 )−𝜈 (𝑥 ) 

+ 𝜇 (𝑥 )−𝜇 (𝑥 ) 
+ 𝜈 (𝑥 )−𝜈 (𝑥 ) 

> 0
 

… 
𝜕𝐷1 𝜇(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1) 𝜈𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛−1) 1−𝜇𝐴(𝑥𝑛) 1−𝜈𝐴(𝑥𝑛) 

… 
𝜕𝜇(𝑥𝑛) 𝜇𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1) 𝜈𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛−1) 1−𝜇𝐵(𝑥𝑛)

 1−𝜈𝐵(𝑥𝑛) 

https://scienxt.com/
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𝐴    𝑖 𝐴    1+1 𝐴    𝑖+1 𝐴     𝑖 𝐴    𝑖+1 𝐴 𝑖 

𝐴    2 𝐴    2 𝐴     𝑛 𝐴    𝑛−1 𝐴     𝑛 𝐴    𝑛−1 𝐴     𝑛 𝐴 𝑛 

1 

= , 

= . 

𝜕𝜇   (  )  𝜕𝜇   (𝑥  )  
= 𝜇   (𝑥  )−𝜇   (𝑥 ) +   𝜈   (𝑥  )−𝜈  (𝑥 )   + 

1−𝜇 (𝑥 ) 
+ 

1−𝜈 (𝑥 ) 
> 0

 

and 𝜕𝜇   (𝑥 )𝜕𝜇  (𝑥 ) 
= − 𝜇 (𝑥 )−𝜇 (𝑥 ) 

− 𝜈 (𝑥 )−𝜈 (𝑥 )
.
 

 

Hence, 

𝜕𝜇 

(𝑥  ) 

(𝜕𝜇 

(𝑥 )) . 

𝜕𝜇 

 

 

(

𝑥 

) (𝜕𝜇  

 

(

𝑥 

2 

)) − (𝜕𝜇 0. 

𝐴 𝑖 𝐴 𝑖 𝐴 

𝑖+1 

𝐴    𝑖+1 𝐴 

Obviously, 𝐷1(𝐴, 𝐵) is a convex function of 𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … , 𝜇𝐴(𝑥𝑛)  and  𝜈𝐴(𝑥1), 𝜈𝐴(𝑥2), 

… … , 𝜈𝐴(𝑥𝑛). Its minimum value subject to ∑𝑖=1 𝜇(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) = 1𝑛is given as follows 

 𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥1) 

 𝜇 

𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1)  

𝜇(𝑥1)+𝜈𝐴(𝑥1) 𝜇𝐵(𝑥1)+𝜈𝐵(𝑥1) 

  𝜇𝐴(𝑥3)+𝜈𝐴(𝑥3)−𝜇𝐴(𝑥2)−𝜈𝐴(𝑥2) 𝜇𝐵(𝑥3)+𝜈𝐵(𝑥3)−𝜇𝐵(𝑥2)−𝜈𝐵(𝑥2) 

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥=) 𝜇𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1) , … …, 

    𝜇𝐴(𝑥𝑛)+𝜈𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)−𝜈𝐴(𝑥𝑛−1) 
=

    

𝜇𝐵(𝑥𝑛)+𝜈𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)−𝜈𝐵(𝑥𝑛−1)  

𝜇𝐴(𝑥𝑛−1)+𝜈𝐴(𝑥𝑛−1)−𝜇𝐴(𝑥𝑛−2)−𝜈𝐴(𝑥𝑛−2)

 𝜇𝐵(𝑥𝑛−1)+𝜈𝐵(𝑥𝑛−1)−𝜇𝐵(𝑥𝑛−2)−𝜈𝐵(𝑥𝑛−2) 

 𝜇𝐴(𝑥𝑛)+𝜈𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)−𝜈𝐴(𝑥𝑛−1) 

  

𝜇𝐵(𝑥𝑛)+𝜈𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)−𝜈𝐵(𝑥𝑛−1)  

1−𝜇𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛)   1−𝜇𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛) 

This   condition   is   met   if   𝜇𝐴(𝑥1)  + 𝜈𝐴(𝑥1)  =  𝜇𝐵(𝑥1)  + 𝜈𝐵(𝑥1), 𝜇𝐴(𝑥2) + 𝜈𝐴(𝑥2)  =  𝜇𝐵(𝑥2) 

+ 
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+
( ) 

(     )   
+ …

(     ) 

𝜈(𝑥2), … … , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) 𝑖. 𝑒. 𝐴 = 𝐵. So that when 𝐴 = 𝐵 and 𝐷1(𝐴, 𝐵) ≥ 

0, 

𝐷1(𝐴, 𝐵) has its minimal value. In intuitionistic fuzzy settings where both 𝜇(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) and 

𝜇𝐵(𝑥𝑖) 

+ 𝜈(𝑥𝑖) are monotonically increasing, we can utilize this 𝐷1(𝐴, 𝐵) as an M-distance metric. As a 

result, the minimal M-distance probability distribution is provided when there are no constraints 

other than the natural constraint ∑𝑖=1 𝜇(𝑥𝑖) + 𝜈𝐴(𝑥𝑖𝑛)  = 1 and  the inequality constraints 𝜇𝐴(𝑥𝑖) 

+ 𝜈𝐴(𝑥𝑖) ≥ 0, 1 ≥ 𝜇𝐴(𝑥𝑖) 

+ 𝜈𝐴(𝑥𝑖) ≥  𝜇𝐴(𝑥𝑖−1) + 𝜈𝐴(𝑥𝑖−1), 𝑖  = 1, … , 𝑛, the minimum M-

distance probability    distribution     is    given    by    𝜇𝐴(𝑥1)  +  𝜈𝐴(𝑥1)   =   𝜇𝐵(𝑥1)  +  𝜈𝐵(𝑥1), 

𝜇𝐴(𝑥2)  +  𝜈𝐴(𝑥2) = 

𝜇(𝑥2) + 𝜈𝐵(𝑥2), … … …… , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) and is same as the  apriori 

distribution. 

1.1 THE SECOND MEASURE OF M-DIVERGENCE METRIC IN INTUITIONISTIC 

FUZZY SETTING 

The second such measure is defined by 

𝐷2(𝐴, 𝐵) = (1 + 𝜇  

(𝑥 )) ln 

( + )(1 + 𝜈  

(𝑥 )) ln 

𝐴 1 1+𝑎𝜇(

𝑥1) 

𝐴 1 1+𝑎𝜈(𝑥1) 

𝑎(

𝜇 

(𝑥 ) − 𝜇 (𝑥 )) 

ln 

(     ) ( 
+ 

) 

(

𝜈 

(𝑥  ) −   (𝑥 )) ln … 

𝐴 2 𝐴 1 𝜇(𝑥2)−𝜇𝐵

(𝑥1) 

𝑎 𝐴

 2 

𝐴 1 𝜈(𝑥2)−𝜈𝐵(𝑥1) 

subject to 𝜇𝐵(𝑥1) < 𝜇𝐵(𝑥2) < ⋯ < 𝜇𝐵(𝑥𝑛) and 𝜈𝐵(𝑥1) < 𝜈𝐵(𝑥2) < ⋯ 

< 𝜈𝐵(𝑥𝑛). Also, 
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Now, 2  𝐴   1  𝐴   1  𝐴   2 𝐴   1  𝐴   2

 𝐴   1= 𝑎 ln  + 𝑎 ln  − 𝑎 ln   − 𝑎 ln 

𝐴    1 𝐴     1 𝐴    2 𝐴    1 𝐴    2 𝐴     2 𝐴    1 𝐴 1 

𝜇(𝑥1) < 𝜇𝐴(𝑥2) < ⋯ < 𝜇𝐴(𝑥𝑛) and 𝜈𝐴(𝑥1) < 𝜈𝐴(𝑥2) < ⋯ < 𝜈𝐴(𝑥𝑛). 

    𝜕𝐷  1+𝑎  (𝑥  )  1+𝑎𝜈  (𝑥 )  𝜇   (𝑥  )−𝜇  (𝑥  )  𝜈 (𝑥 )−𝜈 (𝑥 ) 

𝜕𝜇(𝑥1) 1+𝑎𝜇𝐵(𝑥1) 1+𝑎𝜈𝐵(𝑥1) 𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1) 𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1), 

 

 

2 

so 𝜕𝜇 (𝑥 ) 
(𝜕𝜇 (𝑥 )

) = 
1+𝑎(𝜇 (𝑥 )+𝜇 (𝑥 )) 

+ 𝜇 (𝑥 )+𝜈 (𝑥 

)−𝜇 (𝑥 )−𝜈 (𝑥 ) 
> 0

 

similarly 

     𝜕𝐷2      = 𝑎 ln
    𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)

+ 𝑎 ln 
   𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1) 

− 𝑎 ln
   𝜇𝐴(𝑥3)−𝜇𝐴(𝑥2) 

− 𝑎 

ln
 𝜈𝐴(𝑥3)−𝜈𝐴(𝑥2) 

𝜕𝜇𝐴(𝑥2) 𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1) 𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1) 𝜇𝐵(𝑥3)−𝜇𝐵(𝑥2) 𝜈𝐵(𝑥3)−𝜈𝐵(𝑥2) 

and 

 

𝜕𝜇𝐴(𝑥2) (𝜕𝜇𝐴(𝑥2)) = 𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1) + 𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1) + 𝜇𝐴(𝑥3)−𝜇𝐴(𝑥2) + 

𝜈𝐴(𝑥3)−𝜈𝐴(𝑥2) > 0
 

… ��2 ��(��)−��(��−1) ��(��)−��(��−1) ��(��+1)−��(��) ��(��+1)−��(�2) 

���(��) ��(��)−��(��−1) ��(��)−��(��−1) ��(��+1)−��(��) ��(��+1)−��(�2) 
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𝐴    2 𝐴     2 𝐴     𝑛 𝐴    𝑛−1 𝐴     𝑛 𝐴    𝑛−1 𝐴    𝑛+1 𝐴     𝑛 𝐴    𝑛+1 𝐴 𝑛 

𝐴    𝑖 𝐴    1+1 𝐴    𝑖+1 𝐴     𝑖 𝐴    𝑖+1 𝐴 𝑖 

𝜕𝜇   (  ) 
(𝜕𝜇   (𝑥  )

) = 𝜇   (𝑥   )−𝜇   (𝑥 ) + 𝜈   (𝑥  )−𝜈  (𝑥 ) + 𝜇  (𝑥 )−𝜇   (𝑥   ) 
+ 𝜈   (𝑥

 )−𝜈 (𝑥 ) 
> 0

 

 

 

 

and 𝜕𝜇   (𝑥 )𝜕𝜇  (𝑥 ) 
= − 𝜇 (𝑥 )−𝜇 (𝑥 ) 

− 𝜈 (𝑥 )−𝜈 (𝑥 )
.
 

2 

Hence, 

𝜕𝜇 

(𝑥  ) 

(𝜕𝜇 

(𝑥 )) . 

𝜕𝜇 

(

𝑥 

) (𝜕𝜇 (

𝑥 

)) − (𝜕𝜇 0. 

𝐴 𝑖 𝐴 𝑖 𝐴 

𝑖+1 

𝐴    𝑖+1 𝐴 
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𝑖=1 

1 

= , 

−1 

Obviously, 𝐷2(𝐴, 𝐵) is a convex function of 𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … , 𝜇𝐴(𝑥𝑛) and 𝜈𝐴(𝑥1), 𝜈𝐴(𝑥2), … 

… , 𝜈𝐴(𝑥𝑛). Its minimum value subject to ∑𝑛 𝜇(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) = 1 is given as follows 

 

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥1)

   

𝜇𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1)

  

1+𝑎(𝜇𝐴(𝑥1)+𝜈𝐴(𝑥1))  

 1+𝑎(𝜇𝐵(𝑥1)+𝜈𝐵(

𝑥1)) 

  𝜇𝐴(𝑥3)+𝜈𝐴(𝑥3)−𝜇𝐴(𝑥2)−𝜈𝐴(𝑥2) 𝜇𝐵(𝑥3)+𝜈𝐵(𝑥3)−𝜇𝐵(𝑥2)−𝜈𝐵(𝑥2) 

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥=) 𝜇𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1) , … 

…, 

  𝜇𝐴(𝑥𝑛+1)+𝜈𝐴(𝑥𝑛+1)−𝜇𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛) 

 𝜇𝐵(𝑥𝑛+1)+𝜈𝐵(𝑥𝑛+1)−𝜇𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛) 

𝜇𝐴(𝑥𝑛)+𝜈𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)−𝜈𝐴(𝑥𝑛  
=) 𝜇𝐵(𝑥𝑛)+𝜈𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)−𝜈𝐵(𝑥𝑛−1). 

This    condition     is     met     if    𝜇𝐴(𝑥1)  +  𝜈𝐴(𝑥1)  =  𝜇𝐵(𝑥1)  +  𝜈𝐵(𝑥1), 𝜇𝐴(𝑥2)  +  𝜈𝐴(𝑥2)  =  

𝜇𝐵(𝑥2)  + 

𝜈(𝑥2), … … , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) 𝑖. 𝑒. 𝐴 = 𝐵. So that when 𝐴 = 𝐵 and 

𝐷2(𝐴, 𝐵) ≥ 0, 

𝐷2(𝐴, 𝐵)  has its  minimal  value.  In intuitionistic  fuzzy settings where both 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) 

and 𝜇𝐵(𝑥𝑖) 

+ 𝜈(𝑥𝑖) are monotonically increasing, we can utilize this 𝐷2(𝐴, 𝐵) as an M-distance 

metric. As a result, the minimal M-distance probability distribution is provided when 

there are no constraints other than the natural constraint ∑𝑖=1 𝜇(𝑥𝑖) + 𝜈𝐴(𝑥𝑖𝑛)  = 1 and  

the inequality constraints 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) ≥ 0, 1 ≥ 𝜇𝐴(𝑥𝑖) 

+ 𝜈𝐴(𝑥𝑖) ≥  𝜇𝐴(𝑥𝑖−1) + 𝜈𝐴(𝑥𝑖−1), 𝑖  = 1, … , 𝑛, the minimum

 M-distance 

probability    distribution     is     given   by    𝜇𝐴(𝑥1)  +  𝜈𝐴(𝑥1)   =   𝜇𝐵(𝑥1)  +  𝜈𝐵(𝑥1), 

𝜇𝐴(𝑥2)  +  𝜈𝐴(𝑥2) = 
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𝜇(𝑥2) + 𝜈𝐵(𝑥2), … … …… , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) and is same as the  

apriori distribution. 

CONCLUSION 

In this  communication  an  approach  to  develop  measures  of  intuitionistic  fuzzy  

M-distance metric using aggregation  operators is proposed. The proposed measure is 

a distance measure. To add flexibility in applications the divergence (distance) 

measures may be generalized by using a parameter. In the literature  related  to  image  

segmentation is not done, but this is a measure to its own right and can be used for 

thresholding  in  some  situations  because different measures  have  their suitability in 

different situations. Finally, we have studied the most usual measures of IF-sets, 

concluding that they are IF-M-distance metric. 
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