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Abstract: 

 

This abstract presents a framework for simulating Magnetic Soft Robots (MSRs) 

using the Material Point Method (MPM). The framework integrates hyper-elastic 

material models with the magnetic wrench induced under external fields, allowing 

for the accurate representation of MSR behavior. In contrast to Finite Element 

Methods (FEM), the MPM framework inherently models self-collision and 

captures the effect of forces in non-homogeneous magnetic fields. The document 

demonstrates the MPM framework's ability to model the influence of magnetic 

wrenches on MSRs, capture dynamic behavior under time-varying magnetic 

fields, and provide an accurate representation of deformation when colliding with 

obstacles. Additionally, the framework is validated through comparisons with 

real-world MSR designs from the literature, showcasing its capability to replicate 

complex behaviors seen in real robots in simulation. 
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1. Introduction: 

The field of robotics is constantly evolving, with engineers pushing the boundaries of what's 

possible. Magnetic soft robots (MSRs) represent a fascinating new chapter in this story. MSRs 

have attracted considerable interest due to their potential for miniaturization enabled by off-

board actuation . Unlike traditional robots reliant on motors and gears, MSRs leverage the 

power of magnetism for movement. This unique approach unlocks exciting possibilities, 

particularly for tasks requiring handiness and miniaturization. 

MSRs are essentially tiny robots crafted from soft, elastic materials – think stretchy polymers 

– embedded with magnetic particles . These magnetic inclusions are the key to their 

operation. By strategically manipulating an external magnetic field, we [30] can exert a force 

and torque (known as a wrench) on the MSR. This allows for precise control over the robot's 

movement and orientation, making it ideal for navigating intricate environments. 

Imagine a scenario where traditional robots struggle – exploring confined spaces within 

delicate machinery or maneuvering through the complex internal structures of a building. 

MSRs, with their inherent flexibility and wireless control via magnetic fields, could excel in 

such situations. Their soft bodies allow them to navigate tight corners and delicate surfaces 

without causing damage. 

However, simulating the behavior of MSRs presents a significant challenge. Traditional 

modeling techniques often rely on dividing the robot's body into a mesh of elements. This 

approach, known as the Finite Element Method (FEM), becomes computationally expensive 

and less accurate for robots that undergo large deformations [10], [11], a hallmark of MSRs. 

To simplify FEM modeling, the assumption of discrete hard magnetic elements embedded 

within the soft material is often made. However, this assumption loses accuracy as 

deformation increases. Zhao et al. addressed this by deriving a stress relationship for 

magnetically hard, mechanically soft materials and integrating it into FEM software 

(ABAQUS), enabling continuous, deformable magnetic profiles within the material [11]. 

Despite its accuracy, nonlinear FEM analysis incurs significant computational costs, and mesh 

distortion under large deformation can lead to erroneous results and poor convergence [15]. 

This is where the Material Point Method (MPM) can step in as a potential game-changer [16], 

[17]. The MPM is a hybrid Lagrangian-Eulerian model for continuum mechanics, offering 

advantages over Finite Element Methods (FEM) by providing a cyclical process that moves 

between a particle-based representation and a fixed grid. This approach allows for the 

accurate representation of the deformation experienced in magnetic soft materials, particularly 
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under high deformation and in the presence of non-homogeneous magnetic fields. This 

method offers several advantages: 

• Enhanced Accuracy: MPM can more accurately capture the large deformations 

experienced by MSRs during movement. 

• Reduced Computational Cost: By avoiding the mesh generation step, MPM can 

potentially be more computationally efficient. 

• Self-Collision Handling: MPM inherently accounts for self-collision – instances where 

different parts of the MSR come into contact with each other during 

movementeliminating the need for additional calculations. 

In this work, we  extend MPM to model magnetically hard and mechanically soft materials, 

demonstrating its capability to model large MSR deformations under varying fields. Our 

system can represent dynamic behavior, collisions, and equilibrium states in static fields. 

Additionally, each particle in the MPM representation is associated with its magnetization 

vector, enabling the modeling of varied and near-continuous magnetization profiles. We [30] 

showcase the ability to model torques and magnetic forces present in non-homogeneous 

magnetic fields, with implicit self-collision handling allowing the study of physical 

interactions between robot segments. External forces can be easily integrated into the model, 

providing realistic interactions with surfaces and obstacles. Validation of the models on real-

world MSR designs from the literature showcases the framework's capability to replicate 

complex behaviors seen in real robots in simulation. 

 

2. Methodology:

2.1. The material point method: 

(MPM) stands as a pivotal numerical technique in continuum mechanics, integrating elements 

from both Eulerian and Lagrangian frameworks. It operates through two fundamental 

material representations: the Lagrangian perspective, comprising discrete particles of fixed 

mass and volume that effectively discretize the material, and the Eulerian viewpoint, which 

employs an undeformable grid fixed within a reference frame. In this grid, nodes are evenly 

spaced and remain static, facilitating the transfer of properties between different time steps. 

Within MPM, the exchange of information between these representations occurs via two key 

processes: Particle-to-Grid (P2G) and Grid-to-Particle (G2P). During P2G, properties from 

the particles are transferred to the grid nodes, while G2P involves the  
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W(Δr) = w(Δx)w(Δy)w(Δz)                                                                          (1) 

where 

Where Δr = [Δx, Δy, Δz]T is the relative displacement between the particle and the node at i, j, 

k a. α ∈ {Δx, Δy, Δz}. As such grid mass is distributed as with each other during movement 

eliminating the need for additional calculations. 

In this work, we [30] extend MPM to model magnetically hard and mechanically soft 

materials, demonstrating its capability to model large MSR deformations under varying 

fields. Our system can represent dynamic behavior, collisions, and equilibrium states in static 

fields. Additionally, each particle in the MPM representation is associated with its 

magnetization vector, enabling the modeling of varied and near-continuous magnetization 

profiles. We [30] showcase the ability to model torques and magnetic forces present in non-

homogeneous magnetic fields, with implicit self-collision handling allowing the study of 

physical interactions between robot segments. External forces can be easily integrated into 

the model, providing realistic interactions with surfaces and obstacles. Validation of the 

models on real-world MSR designs from the literature showcases the framework's capability 

to replicate complex behaviors seen in real robots in simulation. interpolation of properties 

from the grid back to the particles. 

2.2. Particle (lagrangian) representation: 

Particles are initialized to represent the geometry of the soft robot and their position at time t 

is notated as xt p ∈ R3. vt p ∈ R3 represents the particle velocity vector and Ct p ∈ R3×3 

represents the affine velocity matrix . A final variable Ft p ∈ R3×3 represents the particle 

deformation gradient initialized to the identity matrix F0 p = I. 

2.3. Particle to grid (P2G): 

To transfer the particle representation of the material to the grid, we [30] must distribute the 

properties of the particle to the surrounding nodes. Here,  the properties are distributed using 

a quadratic B-spline kernel distributed to a 3 × 3 × 3 neighborhood of grid nodes given as 

Mt
i,j,k= 𝛴p W(Δr)mp,                                                                                                       (3) 

where mp is the particle mass equal to ρvp where ρ is the material density and vp is the particle 

particle volume. Grid momentum is calculated as 

𝑝𝑖,𝑗,𝑘
𝑡  = 𝛴p W(Δr) ( mpv

t
p − ( 4 /δx2vpp

t
pp(Ft

p)
T + mpCn

p ) Δr  )                                      (4) 
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where Pt 
p is the first Piola–Kirchhoff stress tensor 

2.4. Grid (eulerian) representation: 

After transfer to the grid representation, the effect of external forces is imposed (Fig. 

1(c)). These external forces and the grid momentum can be integrated to form the grid 

velocity. 

Vt
i,j,k= 1 /mt

i,j,k( p
t
i,j,k + ft

i,j,kΔt),                                                                                       (5) 

where Δt is the simulation time stepping and 𝑓𝑖,𝑗,𝑘
𝑡  is the external force on the node. For 

all nodes where   𝑚𝑖,𝑗,𝑘
𝑡 ≠ 0. 

 

 

 

 

 

Figure. 1 : (a) Internal forces and magnetic stress are computed in the particle domain. (b) Particle properties 

are transferred to grid representation. (c) External interaction and forces due to magnetic gradients are 

computed in the grid domain. (d) Particle properties are reconstructed from the grid

Our research endeavors to extend the Moving Least Squares - Material Point Method (MLS-

MPM) algorithm to accurately model the actuation experienced within magnetic materials. 

MLS-MPM incorporates the Moving Least Squares (MLS) interpolation technique into MPM, 

offering a smoother representation of particle properties. For a comprehensive exploration of 

MLS-MPM, readers are encouraged to delve into the detailed discussions provided by [18] 

and [19]. 

mixed, this composite material is poured into molds corresponding to the desired shape of the 

magnetic robot and allowed to set [23]. Subsequently, the cast undergoes exposure to a 

saturating magnetizing field to establish the desired direction of magnetization. Upon 

removal from the magnetic field, the material retains a remnant magnetization. 

2.5. Grid to particle (G2P): 

After the velocities in the grid frame have been calculated, particle velocity and affine 

velocity can then be reconstructed utilizing the same weighting kernel specified in Section II-

B (Fig. 1(d)). 

Vt+1
p =𝛴𝛴𝛴 W(Δr)vt

i,j,k,                                                                                                            (6) 
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Ct+1
p = 

4

𝛿𝑥2
𝛴𝑖𝛴𝑗𝛴k W(Δr)vt

i,j,kΔr.                                                                                              (7) 

The deformation gradient of the particle and particle positions are updated, representing the 

overall change in deformation and pose of material in the time step. 

Ft+1
p = (∥ + Cp 

t+1Δt) Ft
p                                                                                                                                                                   (8) 

Xt+1
p = xt

p + vt+1
pΔt                                                                                                                   (9) 

 

External interaction and forces due to magnetic gradients are computed in the grid domain. 

(d)particles properties are reco 

3. Modeling techniques: 

In the realm of soft robotics, a common approach involves the utilization of elastomers 

embedded with magnetic elements. Typically, this entails mixing a silicone prepolymer with 

hard magnetic microparticles, often NdFeB owing to its notable remnant magnetization. Once 

mixed, this composite material is poured into molds corresponding to the desired shape of the 

magnetic robot and allowed to set [23]. Subsequently, the cast 

undergoes exposure to a saturating magnetizing field to establish the desired direction of 

magnetization. Upon removal from the magnetic field, the material retains a remnant 

magnetization. 

In our research, we [30] regard this material as an ideal hard-magnetic soft material . Notably, 

we neglect the self-interaction among the magnetic elements within the Magnetic Soft Robot 

(MSR). This simplification has proven valid in modeling MSR deformation, as the relative 

strength of this self-interaction pales in comparison to the interaction with larger external 

magnetic fields . 

3.1. Elastomeric properties: 

For modeling the elastic properties of the material the NeoHookean elastic model is adopted 

which has been shown to accurately model the stress-strain relationship of magnetic soft 
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materials in the strain ranges experienced in soft robotic applications . The Neo-Hookean 

model is given as 

Pt
p elastic= GJ−2/3( Ft

p–
𝐼1

3
 3 F-T)+ KJ(J − 1)F-2 .                                                      (10) 

WherePt
p elastic is the elastic contribution of the first Piola-Kirchoff stress tensor, G is the shear 

modulus of the material and K is the bulk modulus. J = determinant(Ft p) and I1 = trace(FtT p 

Ft p). To satisfy the assumption of near incompressibility of the utilized silicone polymers we 

chose the bulk modulus to be a sufficiently high value. In this case, we set K = 20G. At the 

strain/scale ranges relevant to our MSRs, the actual value of the bulk modulus does not 

largely affect the final deformation . 

3.2. Magnetic properties: 

torque between the magnetic moment and the external field. 

τ = m × B                                                                                                                                (11) 

where B is t𝑚𝑖,𝑗,𝑘
𝑡 A magnetic agent under external magnetic fields will experience an aligning 

he external magnetic field and m is the magnetic moment vector. Further, in the case of a non-

homogeneous magnetic field, the agent will experience a force, 

f = ∇(B · m).                                                                                                                           (12) 

This force is proportional to the spatial gradient of the magnetic field and is at maximum with 

the alignment of the magnetic moment and external field. In the FEM approach outlined by 

Zhao et al.  the effect of aligning torque under homogeneous magnetic fields is integrated into 

the elastic model via an additional stress. We [30]utilize this stress along with the Neo-

Hookean model in the P2G step of the MPM cycle. This, in the first Piola-Kirchoff form, is 

Pt 
p magnetic = − 1/μ0 B ⊗Brp,                                                                                                    (13) 

where ⊗ is the dyadic product and Brp is the remnant magnetic flux density associated with 

the particle. 

Pt
p = Pt

p elastic + Pt
pmagnetic.                                                                                                        (14) 

By incorporating the magnetic stress effect into the P2G, step, the effect of the realigning 

torque can be incorporated into the MPM. However, the forces induced in non-homogeneous 

magnetic fields are not covered. Therefore the magnetic force is incorporated as an external 

force in the grid velocity calculation. To calculate the force at the grid node, we calculate the 

equivalent magnetic moment of the node as a product of the volume of magnetic particles 

using the same weightings as described in the P2G Section II-B 

= vpμp/μo𝛴 W(Δr)�̃�rp.                                                                                                             (15) 
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where�̃�rp is the remnant magnetic flux density rotated into the current reference frame. The 

external magnetic force can then be derived as 

fmagnetic = ∇Bi,j,k
T · mt

i,j,k,                                                                                                          (16) 

where ∇Bi,j,k is the spatial gradient of the magnetic field at the node. 

3.3. Material damping: 

complex factors (viscosity, air resistance, temperature change, etc.). To capture these 

properties Deceleration is the rate at which an object transmits downward and represents 

several of magnetic soft materials, we model damping by adding a force proportional to the 

current lattice motion,  

fdamping=−𝑐𝑝𝑖,𝑗,𝑘
𝑡      (17)  

where c is the damping constant. This external force will drive the object into the final 

equilibrium state creating a stable applied field. So there is a full range of external forces 

entering the network phase 

ft
i,j,k= fmagnetic + fdamping + fgravity(18) ft

i,j,k= ∇Bi,j,k
T · mt

i,j,k − cpt
i,j,k + mt

i,j,kg(19). 

where g is the acceleration due to gravity. It should be noted that the proposed MPM 

extension for modeling magnetic soft materials requires three material parameters that are 

easily obtained. These are the material density, magnetic residue, and shear parameters of the 

material. However, being humble will be much harder. In magnetics, one is usually interested 

in the final equilibrium state of the robot, so the damping parameter that results in the fastest 

settling time of the system is most appropriate This can be achieved by repeated testing. In 

cases where accurate modeling of complexity is required, the approach followed by Shariat et 

al. can be used . 

 

4. Experimental verification: 

4.1. Implementation: 

The Taichi programming language  was used to develop the magnetic material point method 

(MPM) algorithm, which was simulated on an NVIDIA Quadro RTX 4000 GPU with selected 

GPU parallelization support and Python-like syntax 

It is important to balance the velocity model and the stability in determining the time step for 

the simulation. As shown in , the maximum time step (𝛥𝑡𝑚𝑎𝑥)for the MPM is given by:  

𝛥𝑡𝑚𝑎𝑥 = 𝑐
𝛿𝑥

√𝜌3

1

3𝐺
 

Here C is a constant close to one. Larger network node spacing can increase the time step but 
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sacrifice fidelity when external forces are added. The initial particle distribution is obtained 

by creating the same 3D model of the robot geometry. 

After empirically validating the method on planar models to ensure consistency with real-

world practice, a full 3D implementation of the magnetic MPM framework is presented, 

simulating magnetic soft robots (MSRs) from existing literature and material parameters 

obtained following the method shown in the center and by [24] . 

 

 

 

 

 

 

Figure. 2. High deformation magnetic soft beam experiment as presented by Zhao et al. [11] 

(a) The applied field Bapplied is in the opposite direction to the remnant magnetization Br of 

the soft material leading to high deflection. (L = 17.2 mm, C = 0.84 mm, W = 5 mm). (b) 

Magnetic MPM methodology compared with experimental results and FEM analysis [11] 

G−1μ−1 0 |Br| is a constant which leads these results to be independent of material 

parameters. (c) Mean Absolute Percentage Error (MAPE) converges with increased particle 

density. 

4.2. Magnetic beam deformation: 

To validate our method, we repeated [30] the beam-bending experiment of Zhao et al. [11]. 

We used a magnetically strong but mechanically soft beam made of PDMS (Sylgard 184) 

with parameters (G = 303 kPa) and (|Br| = 0.258 T), we made it a vector with an external 

magnetic field coherent with it in contrast to the residual the magnetization of the beam. 

With increasing field strength, this pattern reversed (see Fig. 2(a) ).We recreated this situation 

in our system by changing the size of the particles to match the beam (δx = 0.3 mm), (Δt = 6 

*10-6 s). We contrasted the resulting deflection (δmax /L) with the authors’ experimental FEM 

data (Fig. 2 (b)).  

The effects are consistent with the densities proven in Figure 2(c), in which the mean average 

error (MAPE) of 576 mm-2 particle size was determined to be 6.1% As a result of this take a 

look at Therefore, we're capable of select smaller complexes for similarly trying out.  . 

4.3. Deformation under non-homogeneous magnetic fields: 
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We [30] investigated the interaction between a magnetic soft robot (MSR) and a permanent 

magnet to evaluate the ability of the MPM system to generate forces from magnetic field 

gradients MSR of Ecoflex 30 silicon polymer blended with NdFeB microparticles (1:1). in) of 

a sample mass ratio), magnetized with its major axis 100 mm x 0 mm measurement placed on 

a circular neodymium magnet, with a residualcapacityof1.44T 

In this configuration, no magnetic torque was observed due to the alignment of the 

magnetization of the robot with the permanent magnet. The MSR structure showed periodic 

changes in thickness to induce more distortion compared to the plain beam, where the 

stronger parts increased the total magnetic moment and the stronger parts of flat surfaces 

experienced larger strains due to lower elastic forces the MSR magnet using linear steps can 

transport, to extend the length of the large magnetic field gradient encountered 

 

 

 

 

 

 

Figure. 3: Comparison of simulation and experimental results for the deformation of the robot as described 

in Section IV-C due to increasing field gradient forces as it's introduced towards the magnet 

Simulation parameters included (δx = 2 mm, Δt = 1 × 10−6 s, N = 15,359) particles. 

Comparative analysis of strain between simulation and experimental setup (as shown in Fig. 

3) revealed strong agreement. While some error at lower distances to the magnet was noted, it 

was attributed to limitations inmagnetic field modeling and hyper-elastic model accuracy, 

rather than a flaw in the methodology. 

 

 

 

 

 

 

Figure. 4: Comparison of maximum normalized deflection δmax/L of the MSR with experimental results 

when external interaction is considered. (δx = 2 mm, Δt = 5 × 10−5 s, N = 11,520) 

4.4. Interaction with external bodies: 

Automatic material point interfaces in the material point method (MPM) are treated 

implicitly, providing some significant advantages over finite element method (FEM) methods 
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that require additional mesh design between vertices to handle such collisions External forces 

can be incorporated into the internal model without the complexity of the mesh 

representation. 

To demonstrate the capability of the MPM system to model interactions with external objects, 

we [30] investigated the deformation of an axially magnetically magnetic soft robot (MSR) in 

contact with a rigid obstacle. 

𝑣𝑜𝑢𝑡={
0        𝑖𝑓 𝑣𝑖𝑛 ≥ 0
𝑣𝑖𝑛    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑣𝑖𝑛 represents the input velocity and 𝑣𝑜𝑢𝑡is the velocity used in particle mode 

reconstruction. 

The MSR with dimensions of 60 × 3 × 3 mm consists of Dragonskin-10 silicone polymer 

doped with NdFeB microparticles at 1:1 mass ratio Simulation results (depicted in Fig. 4 ) 

Considering that an external component has an MPM framework in which the normalized 

maximum deflection of the applied magnetic field is 
𝛿

𝐿
maxshow It should be noted that, at large 

deflections, a noticeable difference in tip position is observed, which may be due to the 

accuracy limit of the underlying hyperelastic model at high deformations 

4.5. Magnetic soft robots from the literature: 

In this section, we  update the magnetic soft robot (MSR) system from the literature to show 

the adaptability of our MPM system: 

1)  Developmental MSR (Pittiglio et al., ): We adopted their methodology. In a range of 

magnetic and non-magnetic materials, we have . An optimization technique was used to 

estimate each block's magnetization vector so that, in a given magnetic field, the 

desired shape could be obtained. Our method's efficiency was validated by the 

simulation findings, which were more consistent and resembled real-world behavior 

under the same magnetic field (see Fig. 5(a)). 

2)  Small soft robots (Hu et al. ): We emulate horizontal interactions by using the collision 

model, as per Hu et al. . We did this again while using a rotating external magnetic field 

with different strengths (refer to Fig. 5(b)). The authors' observation of "walking" 

behavior shows our system's capacity to carry out several intricate tasks. 
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3)  Unclamped six-arm receiver (Xu et al., 2013): We adhere to Xu et al., 2013, and 

demonstrate the impact-based trapping behavior.Simulation results(See Fig. 5(c)). 

demonstrated the robot's ability to fold up and grasp small objects upon the application of a 

perpendicular magnetic field, These examples highlight the potential of the MPM framework 

for iterative design and testing of MSRs, offering advantages over complex fabrication and 

experimental setups. Additionally, the inherent ability of MPM to handle self-collision 

simplifies the modeling process compared to FEM approaches. 

Figure. 5: MSRs from the literature represented in the MPM framework

5. Conclusion: 

We [30] have introduced a fresh approach to MSR simulation in this paper. The deformation 

encountered can be correctly represented by the Material Point Method (MPM). In the 

presence of external magnetic fields in magnetic soft materials at extreme deformation. In 

contrast to FEM techniques, MPM allows MSRs that depend on self-interaction to be 

represented because it implicitly depicts self-collisions in the material. Furthermore, by the 

integration of the magnetic forces encountered in non-homogeneous magnetic fields, our 

methodology has expanded the capabilities of already available systems. The methodology 
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has been tested, and the results demonstrate a significant agreement with real-world 

deformation at large strains (6.1% MAPE, Fig. (c)). Additionally, a comparison with MSRs 

from the literature demonstrates how well the suggested methodology may replicate the 

complicated behavior observed in real robots. For MSR simulation, existing frameworks have 

frequently depended on unpublished, closed-source, or proprietary implementations. 

We have made our magnetic MPM framework implementation examples available so that 

others can make use of our approach. 3D computer-aided design (CAD) models that specify 

the magnetic profile of every piece can be used to create robots. When compared to 

fabrication and experimental setups, the speed at which concepts may be tested via simulation 

enables the rapid iterative design of MSRs. Complex behaviors may be evaluated and ideas 

can be examined and adjusted when combined with the capacity to model outside influences 

and impediments. We anticipate that by making our implementation publicly available, other 

people working on simulation frameworks will be able to directly compare our work with 

theirs. Our framework is ideal for training or optimizing machine learning systems that may 

be implemented in real-world scenarios. For instance, simpler rigid-link models were used to 

optimize Pittiglio et al.'s continuum MSRs . These designs could be closer to the intended 

goal or include dynamic behavior under the impact of transient magnetic fields if more 

precise modeling was used. Our implementation's mass parallelization uses GPU processing 

to produce efficient runtimes. 

The MPM is a continuous function of the starting variable values, in contrast to FEM. Hu et 

al. took advantage of this fact .to create a completely differentiable physics simulation to cut 

down on the number of design optimization iterations required for convergence. 

This may be repeated using our methods to effectively optimize parameters including robot 

shape, applied field, and magnetic profile. 

The methodology that is being given solely takes into account the interplay between the 

actuating field applied externally and the material's magnetic field. Any self-interaction 

between the discrete magnetic robot segments is ignored in this. This assumption works well 

for the examples in our experimental verification, but it might not accurately describe the 

behavior of alternative MSR designs that depend on this interaction. The forces that interplay 

when several MSRs are present in the same workspace could serve as an illustration of this . 

Future research could take into account the field created by distinct magnetic segments to 

more accurately depict this property. Naturally, this would make the simulation much more 

complex in terms of algorithms and processing. One potential application of MPM's intrinsic 

particle collision representation capability is to examine the interplay between MSRs and 
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external soft bodies. Because of the therapeutic uses of MSRs to investigate the relationship 

between robots and soft tissues, this is especially interesting. 
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