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Abstract:  

 

Exact solution of an in-compressible fluid of second order type by causing 

disturbances in the liquid which is initially at rest due to bottom oscillating 

sinusoidally has been obtained in this paper. The results presented are in terms of 

non-dimensional elastic- viscosity parameter ( ) which depends on the non-

Newtonian coefficient and the frequency of excitation ( ) of the external 

disturbance while considering the magnetic parameter (m), angle of inclination ( ) 

and porosity (k) of the medium into account. The flow parameters are found to be 

identical with that of Newtonian case as → 0, → 0, m→ 0 and k→. 
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1. Introduction: 

The study of flow past porous boundaries has several important applications in the fields of 

science, engineering, technology, bio physics, and astrophysics and space dynamics. 

Transpiration cooling of reentry vehicles and rocket boosters, cross hatching on the ablative 

surfaces and film vaporization in combustion chambers are few such applications. In the 

chemical and nuclear reactors the problem assumes greater significance. Over a period of time, 

in all chemical reactors, slurry adheres to the walls of the reactor and gets consolidated. As a 

result of which, the chemical compounds within the reactor percolates through the boundaries 

causing either loss of production and  or consuming more reaction time. In many situations, so 

as to reduce the reaction time which is a subject of prime importance, the reactor chamber is 

also subjected to sinusoidal vibrations. Further, due to the presence of charged particles either 

in the in the chemical or nuclear reactor, induced magnetic effects are generated. In which case, 

the problem is more complicated. Also, the problem assumes greater importance especially in 

biological systems where the secretion through glands is involved. Many times, either in the 

chemical processing units or in biological system, the secreted fluid is not only viscous but is 

also elastico viscous. The presence of elastico viscous nature of the fluid and the presence of 

magnetic field, causes drastic effects in evaluating the characteristic features of the fluid flow. 

This motivated the study and analysis of the problem in greater detail. The knowledge of flow 

through porous media is useful in the recovery of crude oil efficiently from the pores of 

reservoir rocks by displacement with immiscible water (vide, Rudraiah et al., 1979). The flow 

through porous media occurs in the ground-water hydrology, irrigation, drainage problems and 

also in absorption and filtration processes in chemical engineering. This subject has wide 

spread applications to specific problems encountered in the civil engineering and agriculture 

engineering, and many industries. Thus the diffusion and flow of fluids through ceramic 

materials as bricks and porous earthenware has long been a problem of the ceramic industry. 

The Scientific treatment of the problem of irrigation, Soil erosion and tile drainage are present 

developments of porous media. In hydrology, the movement of trace pollutants in water 

systems can be studied with the knowledge of flow through porous media. The principles of 

this subject are useful in recovering the water for drinking and irrigation purposes. Thurson 

(1972) was the earliest to recognize the viscoelastic nature of blood and that the viscoelastic 

behavior is less prominent with increasing shear rate. Lamb (1932) has discussed the viscous 

flow over an oscillatory bottom earlier in his treatise on hydrodynamics. Berman (1958) studied 

the problem of two- dimensional steady state Newtonian laminar flow in a channel with porous 
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walls. An exact, analytical expression for the dependence of velocity on the pressure gradient 

has been derived. The response of a Coleman-Noll (1960) Second order visco- elastic fluid 

occupying a semi- infinite region due to harmonic oscillation of its bottom has been 

investigated later by Pattabhiramacharyulu (1964, 1966). Vidyanidhi, V. and Nigam S.D. 

(1967) studied secondary flow in rotating channel. Oscillatory motion of an electrically 

conducting viscoelastic fluid over a stretching sheet in a saturated porous medium was studied 

by K. Rajagopal (1984). A visco-elastic effect of non- Newtonian flow through porous media 

was studied by Gupta R.K. and Sridhar T (1985). Pascal and Pascal (1989) studied the visco 

elastic effects in non-Newtonian steady flows through porous media. Flow of a visco elastic 

fluid over a stretching sheet was studied by Rajagopal (2006). Ariel P.D. (1994) studied the 

flow of a visco elastic fluid past a porous plate. Petrov A.G. (2000) examined analytically the 

unsteady flow of Bingham fluid caused by a abruptly applied pressure gradient. With respect 

to the flows of non- Newtonian fluids between two parallel porous walls, Ariel (2002) obtained 

exact analytical solutions of laminar flow of a second grade visco-elastic fluid employing two 

geometries. An oscillatory plate temperature effect of free convection flow of dissipative fluid 

between long vertical parallel plates was studied by Narahari (2009). Singh and Paul (2006) 

presented an analysis of the transient free convective flow of a viscous incompressible fluid 

between two parallel vertical walls occurring as a result of asymmetric heating/cooling of the 

walls. Turkyilmazoglu(2009) examined exact solutions for the incompressible viscous fluid of 

a porous rotating disk flow. Exact solution corresponding to viscous in compressible 

Newtonian conducting fluid flow due to a porous rotating disk by M. Turkyilmazoglu(2009). 

The effect of suction and blowing on purely analytic solutions of the compressible boundary 

layer flow due to a porous rotating disk with heat transfer studied by Turkyilmazoglu(2009). 

Later, (2014) had examined the problem of unsteady flow of an incompressible viscous 

electrically conducting fluid in the tube of elliptical cross section under the influence of the 

magnetic field. Subsequently, (2015) studied the unsteady flow of an incompressible viscous 

fluid in a tube of spherical cross section on a porous boundary. Recently, (2015) had examined 

the problem of unsteady MHD flow of elastico - viscous incompressible fluid through a porous 

media between two parallel plates under the influence of magnetic field. 

The aim of the present paper is to study a class of exact solutions for the flow of incompressible 

electrically conducting elastic-viscous fluid of second order fluid by taking into account the 

magnetic field, 
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The momentum equation of the fluid flowing through a generalized porous medium as 

suggested by Yamamoto and Yamamoto Iwamura (1974) is given by 


dq 

= divS − 


 
dt k 

q 

And the continuity equation for incompressible homogeneous fluid 

Noll (1958) defined a simple material as a substance for which stress can be determined with 

entire knowledge of the history of the strain. This is called simple fluid, if it has property that 

all local states, with the same mass density, are intrinsically equal in response, with all 

observable differences in response being due to definite differences in the history. For any 

given history g(s), a retarded history g (s) can be defined as: 

g (s) = g(s) : 0   1 0  s  . 

(1) 

  being termed as a retardation factor. 

Assuming that the stress is more sensitive to recent deformation that to the deformations at 

distant past, Coleman and Noll proved that the theory of simple fluids yields the theory of 

perfect fluids as→ 0 and that of Newtonian Fluids as a correction (up to the order of   ) to 

the theory of the perfect fluids. Neglecting all the terms of the order of higher than two 

in  , We have incompressible elastic viscous fluid of second order type whose constitutive 

relation is governed by: 

S = −PI +E (1) + E (2) + E (1)
2

 

 

                           1 2 3

where, 

E1 = U, + U                                                                                                               (3) 

And 

E2 = A,   +   A   +   2U     U                                                                                       (4) 
        ij      i,j       j,i      m,i       m, j 

In the above equations, S is the stress-tensor, Ui and Ai are the components of velocity and 

acceleration in the direction of the i coordinate X I while P is indeterminate hydrostatic 

pressure.  The coefficients 1, 2 and 3 are material constants. The constitutive relation for 

general Rivlin – Ericksen (1955) fluid also reduces to equation when the squares and higher 
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orders of E 2 are neglected, while the coefficients being constants. Also the non-Newtonian 

models considered by Reiner (1945) could be obtained from equation (2) when2   = 0   and 

naming 3     as the coefficient of cross viscosity. With reference to the Rivlin -  Ericksen  fluids 

3   may be  called as the coefficient of viscosity. 

It has been reported that a solution of poly - iso - butylene in cetane behaves as a second order 

fluid  and  that Markovitz   determined   the   constants 1 , 2     and  3  In  many  of  the  

chemical processing industries, slurry adheres to the reactor vessels and  gets consolidated.  

As a     resultant     of     this,     the   chemical compounds within the reactor vessel 

percolates through the boundaries causing loss of production and consuming more reaction 

time. In view of such technological and industrial importance wherein the heat and mass 

transfer takes place in the chemical industry, the problem by considering the permeability of 

the bounding surfaces in the reactors attracts the attention of several investigators. 

Introducing the following non dimensional variables as: 

 

 

Where T is the (dimensional) time variable, and  the mass density and L a characteristic 

length. 

We consider a class of plane flows given by the velocity components 

u1 = u ( y, t) and u2= 0                          (5) 

 
1 

U = 
 1ui 

L2t T = 
 

 

 = L2 

in the  direction  of the i coordinate X i 
i L 2 

while P is indeterminate hydrostatic 
pressure.  The coefficients , and  

2 p X Y 
P =   1   i = x  i = y 

1 2 3 L2 L 
i 

L  
i
 

are material constants. The constitutive 

relation for general Rivlin – Ericksen  = L2 2a 
A = 1 i  =

  1 

(1955) fluid also reduces to equation (2) 
3
 

c i 
2 L3 0 

L2 

when the squares and higher orders of E 2 2 s e(1) 2 e(2) 

are neglected, while the coefficients being S = 1 i, j 
E (1) = 1 i, j 

 
 E (2) = 1 i, j 

 
 

constants. Also the non-Newtonian models 

considered by Reiner (1945) could be 

obtained from equation (2) when 

i, j 
L2 

K = 

i, j 
 

kL2 
 

 

1 

L2 

M 

i, j 
 

=  m1 

L2 

2 L4 
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in the directions of rectangular Cartesian coordinates x and y. The velocity field given by (5) 

identically satisfies the incompressibility condition. The stress can now be obtained in the non- 

dimensional form as: 

 

In view of the above, the equations of motion in the present case of porous boundary will 

yield 

 

Eqn (9) shows that x must be independent of space variables and hence may be taken as 
 (t) . Eqn (10) now yields 

 

Considering( (t) = 0 , the flow characterized by the velocity is given by: 

 

Where k is the non-dimensional porosity constant. It may be noted that the presence of  

changes the order of differential from two to three. 

 

2. Disturbance of a liquid at rest due to the sinusoidal oscillations of the 

bottom: 

The oscillations of a classical viscous liquid on the  upper  half   of   the  plane y   0 with the 

bottom oscillating with the velocity eit are examined in the present case. The motion of the 

u 
= − 

p 
+ 2u 

+  
 

 
   

2u 
 

 

−  1 

+
 
+ 

 

Introducing the following non 
dimensional variables as: 

t 

 
and 

x y2 
t 

( 
y2 

) ( 
k 

m )u 

(9) 

0 = − 
p 

+ (2+ ) 

 

 ( 
u 

)2 
 

(10) 

y c y y 
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second order 

fluid is governed by 

boundary conditions 

Eqn (12) with 

u(0, t) = eit   (13) 

u(, t) = 0   (14) 

Assuming the trial solution as: 

 

When expressed in polar form 

 

The flow is thus represented by standing transverse wave with its amplitude rapidly 

diminishing with increasing distance from the plane. This phenomenon   is   independent of  c     

as noticed for all two - dimensional flows. 

The magnification factor A  of the amplitude of this wave, with respect to the amplitude of the 

disturbance ( ) , may be written as 

u( y, t) = eit f ( y) 

 
f '' ( y) = p 2 f ( y) 

Where 

 
(15) 

 
(16) 
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3. Conclusions: 

In this paper , a problem in studied in order to show the effect of the magnetic field and angle 

of inclination on unsteady flow of a visco-elastic fluid flow of second order type creating 

sinusoidal disturbances under the influence of magnetic field on the porous boundary. As m  

0 and  0 the results obtained for the velocity field in agreement to that of “Murthy etal 

(2007)”, “Kulkarni (2015)” respectively. The case of Newtonian fluid can be realized as→ 0, 

k→ , m→ 0 and→0 . 
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