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Abstract: 

 

In this paper, we have obtained the solution for the effect of an angle of 

inclination, mass flow rate, and skin friction on an MHD Non-Newtonian fluid of 

second-order type. The results are expressed in the terms of non-dimensional 

visco-elastic parameter (𝛽) which is dependent on the frequency of excitation (𝜎) 

of the external disturbance and considering the angle of inclination (𝜃) magnetic 

parameter (m), and porosity (k) of the medium into account. We obtained 

expressions for velocity, skin friction and mass flow rate and compared with 

Newtonian. 

 

Keywords:   

Visco-elastic parameter, Angle of inclination, Frequency of excitation 

Magnification parameter, Magnetic parameter. 

 

 

 

 

 

 

 

 

 

 

https://scienxt.com/


 

           SJMIP 

         Scienxt Journal of Manufacturing and Industrial Production 

 

Scienxt Center of Excellence (P) Ltd                                                                                                     SJMIP ||3  

1. Introduction: 

The study of fluid flow past porous boundaries has several applications in the fields of 

science, technology; engineering, biophysics, space dynamics, and astrophysics on the 

ablative surfaces, transpiration cooling of reentry vehicles and rocket boosters, and film 

vaporization in combustion chambers are a few such applications. In chemical and nuclear 

reactors, this problem has a greater significance. Over a period, in most chemical reactors, the 

slurry gets collected on the reactor walls. This results in the percolation of the chemical 

compounds through the boundaries causing either loss of production or consuming more 

reaction time. In some similar situations, to reduce the reaction time, which is a parameter of 

high importance, the reactor chamber is subjected to sinusoidal vibrations. Further, due to the 

presence of charged particles in the reactors, magnetic effects are induced. In this case, the 

problem becomes more complicated. Also, the problem has greater relevance, especially in 

biological systems where fluid secretion through glands is involved. Many times, in biological 

systems or chemical processing units, the secreted fluid is not only viscous but also elastico-

viscous. The presence of the elastico-viscous nature of the fluid and the presence of a 

magnetic field causes drastic effects in evaluating the characteristic features of the fluid flow. 

This motivated the study and analysis of this problem in greater detail. The fluid flow through 

porous media occurs in ground-water irrigation, hydrology, drainage problems, and in 

absorption and filtration processes in chemical engineering. This subject has widespread 

applications to specific problems met in agriculture engineering and civil engineering, and 

many industries. Thus, the diffusion and flow of fluids through ceramic materials such as 

bricks and porous earthenware have long been a problem of the ceramic industry. The 

scientific treatment of the problem of soil erosion, irrigation, and tile drainage are present 

developments of porous media. In hydrology, the movement of trace pollutants in water 

systems can be studied with the knowledge of flow through porous media. The principles of 

this subject are useful in recovering water for drinking and irrigation purposes. The viscous 

flow over an oscillatory bottom earlier in his treatise on hydrodynamics was discussed by [1]. 

Then [2] studied the problem of two-dimensional steady-state Newtonian laminar flow in a 

channel with porous walls. An exact, analytical expression for the dependence of velocity on 

the pressure gradient has been derived. The response of a [3] second order visco- elastic fluid 

occupying a semi-infinite region due to harmonic oscillation of its bottom has been 

investigated later by [4-5]. The study of secondary flow in the rotating channel was conducted 

by [6]. The oscillatory motion of an electrically conducting visco-elastic fluid over a 

stretching sheet in a saturated porous medium was studied by [7]. A visco-elastic effect of 
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non-Newtonian flow through porous media was studied by [8]. Then [9] studied the visco 

elastic effects in non-Newtonian steady flows through porous media. The flow of an elastic-

viscous fluid over a stretching sheet was studied by [10]. Then [11] studied the flow of a 

visco-elastic fluid past a porous plate. Later [12] examined analytically the unsteady flow of 

Bingham fluid was caused by an abruptly applied pressure gradient. The flows of non-

Newtonian fluids between two parallel porous walls, [13] obtained exact analytical solutions 

of the laminar flow of a second grade visco-elastic fluid employing two geometries. An 

oscillatory plate temperature effect of free convection flow of dissipative fluid between long 

vertical parallel plates was studied by [14]. After [15] presented an analysis of the transient 

free convective flow of a viscous incompressible fluid between two parallel vertical walls 

occurring because of asymmetric heating/cooling of the walls. Then [16] examined exact 

solutions for the incompressible viscous fluid of a porous rotating disk flow. The exact 

solution corresponds to viscous incompressible Newtonian conducting fluid flow due to a 

porous rotating disk [17]. The effect of suction and blowing on purely analytic solutions of 

the compressible boundary layer flow due to a porous rotating disk with heat transfer was 

studied by [18]. Later, [19] examined the problem of unsteady flow of an incompressible 

viscous electrically conducting fluid in the tube of elliptical cross-section under the influence 

of the magnetic field. Subsequently, [20] studied the unsteady flow of an incompressible 

viscous fluid in a tube of spherical cross-section on a porous boundary. Recently, [21] 

examined the problem of unsteady MHD flow of elastico – viscous incompressible fluid 

through a porous media between two parallel plates under the influence of a magnetic field. 

The present paper is to study a class of exact solutions for the flow of incompressible 

electrically conducting elastic-viscous fluid of second-order fluid by considering the magnetic 

field, angle of inclination, and porosity factor of the bounding surfaces and compare the 

results with those in the Newtonian case. A uniform magnetic field of constant strength is 

supposed to be applied parallel to the y – direction. The induced magnetic field is negligible 

as compared with the applied magnetic field; the flow is laminar; it is valid for magnetic 

Reynolds numbers less than unity. Further, it is assumed that the magnetic Reynolds number 

is much less than unity, so the induced magnetic field is neglected in comparison with the 

applied magnetic field. We study the disturbance due to sinusoidal oscillation of the bottom of 

a semi-infinite depth. The results are expressed in terms of a non-dimensional porosity 

parameter k, which depends on the non-Newtonian coefficient 𝜑2 and the frequency of 

excitation𝜎. It is noticed that the flow properties are identical to those in the Newtonian 
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case𝛽 → 0, 𝑘 → ∞ ,𝑚 → 0 and  𝜃 → 0. 

 

2. Mathematical formulation of the problem: 

The momentum equation of the fluid flowing through a generalized porous medium as 

suggested by [22] is given by. 

𝜌
𝑑𝑞

𝑑𝑡
= 𝑑𝑖𝑣𝑆 −

𝜇

𝑘
�̄� 

and the continuity equation for incompressible homogeneous fluid 

𝑑𝑖𝑣�̄� = 0 

Noll defined a simple material as a substance for which stress can be decided with the entire 

knowledge of the history of the strain. This is called simple fluid, if it has the property that all 

local states, with the same mass density, are intrinsically equal in response, with all 

observable differences in response being due to definite differences in history. For any given 

history 𝑔(𝑠), a retarded history 𝑔𝜓(𝑠) can be defined as: 

𝑔𝜓(𝑠) = 𝑔(𝜓𝑠): 0 ≤ 𝑠 ≤ ∞. 0 ≤ 𝜓 ≤ 1                                      (1) 

𝜓 being termed as a retardation factor. Assuming that the stress is more sensitive to recent 

deformation than to the deformations in the distant past, Coleman and Noll proved that the 

theory of simple fluids yields the theory of perfect fluids as 𝜓 → 0 and that of Newtonian 

Fluids as a correction (up to the order of 𝜓) to the theory of the perfect fluids. Neglecting all 

the terms of the order of higher than two in 𝜓, We have incompressible elastico viscous fluid 

of second order type whose constitutive relation is governed by: 

𝑆 = −𝑃𝐼 + 𝜑1𝐸(1) + 𝜑2𝐸(2) + 𝜑3𝐸(1)2
                                                             (2) 

Were, 

𝐸𝑖𝑗
1 = 𝑈𝑖,𝑗 + 𝑈𝑗,𝑖                                                                               (3) 

and  

𝐸𝑖𝑗
2 = 𝐴𝑖,𝑗 + 𝐴𝑗,𝑖 + 2𝑈𝑚,𝑖𝑈𝑚,𝑗                                                                           (4) 

In the above equations, S is the stress tensor, 𝑈𝑖, and  𝐴𝑖 are the components of velocity and 

acceleration in the direction of the 𝑖𝑡ℎ coordinate 𝑋𝑖 while 𝑃 is indeterminate hydrostatic 

pressure. The coefficients𝜑1, 𝜑2, and 𝜑3 are material constants. The constitutive relation for 

general Rivlin – Ericksen [23] fluid also reduces to equation (2) when the squares and higher 
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orders of 𝐸2 are neglected, while the coefficients are constants. Also, the non-Newtonian 

models considered by Reiner [24] could be obtained from equation (2) when 𝜑2 = 0 and 

naming 𝜑3 as the coefficient of cross viscosity. With reference to the Rivlin - Ericksen fluids 

𝜑2may be called the coefficient of viscosity.  

It has been reported that a solution of poly - iso - butylene in cetane behaves as a second-

order fluid and that Markovitz determined the constants𝜑1, 𝜑2, and𝜑3. In many chemical 

processing plants, slurry adheres to the reactor vessels and gets combined. As a result of this, 

the chemical compounds within the reactor vessel percolate through the boundaries causing a 

loss of production and consuming more reaction time. Given such technological and 

industrial importance wherein heat and mass transfer take place in the chemical industry, the 

problem of considering the permeability of the bounding surfaces in the reactors attracts the 

attention of several investigators.  

Introducing the following non dimensional variables as: 

𝑈𝑖 =
𝜑1𝑢𝑖

𝜌𝐿
 𝑇 =

𝜌𝐿2𝑡

𝜑1
 𝜑2 = 𝜌𝐿2𝛽 𝑃 =

𝜑1
2𝑝

𝜌𝐿2

𝑋𝑖

𝐿 𝑖
= 𝑥𝑖 

𝑌𝑖

𝐿 𝑖
= 𝑦𝑖 

𝜑3 = 𝜌𝐿2𝜐𝑐 𝐴𝑖 =
𝜑1

2𝑎𝑖

𝜌2𝐿3 𝜃0 =
𝜃𝜑1

𝐿2 𝑆𝑖,𝑗 =
𝜑1

2𝑠𝑖,𝑗

𝜌𝐿2 𝐸𝑖,𝑗
(1)

=
𝜑1𝑒𝑖,𝑗

(1)

𝜌𝐿2  

𝐸𝑖,𝑗
(2)

=
𝜑1

2𝑒𝑖,𝑗
(2)

𝜌2𝐿4  𝐾 =
𝑘𝐿2

𝜑1
𝑀 =

𝑚𝜑1

𝐿2  

Where 𝑇 is the (dimensional) time variable, and 𝜌 the mass density, and 𝐿 is a characteristic 

length.  

We consider a class of plane flows given by the velocity components.  

𝑢1 = 𝑢(𝑦, 𝑡)  And 𝑢2 = 0                                                                       (5) 

In the directions of rectangular Cartesian coordinates x and y. The velocity field given by (5) 

identically satisfies the incompressibility condition. The stress can now be obtained in the 

non-dimensional form as: 

𝑠𝑥𝑥 = −𝑝 + 𝜐𝑐(
𝜕𝑢

𝜕𝑦
)2                                                                  (6) 

𝑠𝑦𝑦 = −𝑝 + (𝜐𝑐 + 2𝛽)(
𝜕𝑢

𝜕𝑦
)2                                                        (7) 

𝑠𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+ 𝛽

𝜕

𝜕𝑦
(

𝜕𝑢

𝜕𝑡
)                                                                 (8) 
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Given the above, the equations of motion in the present case of porous boundary will yield. 

𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2 + 𝛽
𝜕

𝜕𝑡
(

𝜕2𝑢

𝜕𝑦2) − (
1

𝑘
+ 𝑚 + 𝜃)𝑢                                             (9) 

And 

0 = −
𝜕𝑝

𝜕𝑦
+ (2𝛽 + 𝜐𝑐)

𝜕

𝜕𝑦
(

𝜕𝑢

𝜕𝑦
)2                                                     (10) 

Eq (9) shows that −
𝜕𝑝

𝜕𝑥
 must be independent of space variables and hence may be taken as 

𝜉(𝑡). Eq (10) now yields. 

𝑝 = 𝑝0(𝑡) − 𝜉(𝑡)𝑥 + (𝜐𝑐 + 2𝛽)(
𝜕𝑢

𝜕𝑦
)2                                                                   (11) 

Considering𝜉(𝑡) = 0, the flow characterized by the velocity is given by: 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑦2 + 𝛽
𝜕

𝜕𝑡
(

𝜕2𝑢

𝜕𝑦2) − (
1

𝑘
+ 𝑚 + 𝜃)𝑢                                                            (12) 

Where k is the non-dimensional porosity constant. It may be noted that the presence of 𝛽 

changes the order of the differential from two to three.  

 

3. Disturbance of a liquid at rest due to the sinusoidal oscillations of the 

bottom. 

The oscillations of a classical viscous liquid on the upper half of the plane 𝑦 ≥ 0 with the 

bottom oscillating with the velocity αeiσt are examined in the present case.  The motion of the 

second-order fluid is governed by equation (12) with boundary conditions. 

𝑢(0, 𝑡) = 𝛼𝑒𝑖𝜎𝑡                                                        (13) 

𝑢(∞, 𝑡) = 0                     (14) 

Assuming the trial solution as: 

𝑢(𝑦, 𝑡) = 𝛼𝑒𝑖𝜎𝑡𝑓(𝑦)                                                                                (15) 

𝑓 ′′(𝑦) = 𝑝2𝑓(𝑦)                                                                          (16) 

Where                             𝑝2 =
𝑖𝜎+

1

𝑘
+𝑚+𝜃

1+𝑖𝛽𝜎
=

(𝛽𝜎2+
1

𝑘
+𝑚+𝜃)+𝑖(𝜎−(

𝛽𝜎

𝑘
+𝑚𝛽𝜎+𝜃𝛽𝜎)

(1+𝛽2𝜎2)
                        (17) 

The equation (17) is expressed in polar form. 

𝑝 = 𝑟(𝑐𝑜𝑠 𝑐𝑜𝑠(
𝜋

4
−

𝜀

2
) + 𝑖 𝑠𝑖𝑛 𝑠𝑖𝑛(

𝜋

4
−

𝜀

2
))                                                     (18) 

https://scienxt.com/


Volume-2|| Issue-2||2024||May-Aug                                                                                                                SJMIP 

Sanjay et al.,                                                       Scienxt Journal ofManufacturing and Industrial Production

    

 

Scienxt Center of Excellence (P) Ltd           SJMIP||8 

 

𝑟 =
[(𝛽𝜎2+

1

𝑘
+𝑚+𝜃)2+(𝜎−(

𝛽𝜎

𝑘
+𝑚𝛽𝜎+𝜃𝛽𝜎))2]1/2

√(1+𝛽2𝜎2)
,    𝜀 = (𝑄)   and 𝑄 =

1

𝑘
+𝛽𝜎2+𝑚+𝜃

𝜎−(
𝛽𝜎

𝑘
+𝑚𝛽𝜎+𝜃𝛽𝜎)

 

Also, the modified boundary conditions satisfied by 𝑓(𝑦)are. 

𝑓(0) = 1, 𝑓(∞) = 0                                                                             (19) 

Using equation (19) we get the solution for𝑓(𝑦) 

𝑓(𝑦) =𝑒𝑥𝑝 𝑒𝑥𝑝(−𝑦𝑟(𝑐𝑜𝑠 𝑐𝑜𝑠(
𝜋

4
−

𝜀

2
) + 𝑖 𝑠𝑖𝑛 𝑠𝑖𝑛(

𝜋

4
−

𝜀

2
)))                             (20) 

And hence, we get the expression for the velocity field is given below. 

𝑢(𝑦, 𝑡) = 𝛼 𝑒𝑥𝑝 𝑒𝑥𝑝(𝑖𝜎𝑡 − 𝑦𝑟(𝑐𝑜𝑠 𝑐𝑜𝑠(
𝜋

4
−

𝜀

2
) + 𝑖 𝑠𝑖𝑛 𝑠𝑖𝑛(

𝜋

4
−

𝜀

2
)))                              (21) 

The above flow is exemplified by a standing transverse wave with its amplitude rapidly 

deteriorating with increasing distance from the plane. This phenomenon is unrelated of 𝜐𝑐as 

saw for all two - dimensional flows.  

Implying the amplitude of the disturbance (𝛼), the magnification factor 𝐴∗ of the amplitude of 

this wave is by 

 (𝐴∗)2 = (RP of 𝑢(𝑦, 𝑡))2 + (IP of𝑢(𝑦, 𝑡))2                      (22) 

𝐴∗   =  𝛼 𝑒𝑥𝑝 𝑒𝑥𝑝(−𝑦√𝑟 𝑐𝑜𝑠 𝑐𝑜𝑠(
𝜋

4
−

𝜀

2
))                                                       (23) 

Which is in the form of   𝐴∗ = 𝑒−𝜒𝑦∗
 

Were,                         

𝜒𝑦∗ = 
𝑦√𝑟

2
[𝑐𝑜𝑠 𝑐𝑜𝑠

𝜀

2
+𝑠𝑖𝑛 𝑠𝑖𝑛

𝜀

2
]                                                          (24) 

𝜒 =
1

(1+𝛽2𝜎2)
1
4

√𝑄+√1+𝑄2

1+𝑄2                                                            (25) 

And 

𝑦∗ =
𝑦(1+𝛽2𝜎2)

1
4

√2
[

(
1

𝑘
+𝑚+𝜃+𝛽𝜎2)2+(𝜎−(

𝛽𝜎

𝑘
+𝑚𝛽𝜎+𝜃𝛽𝜎)2

(1+𝛽2𝜎2)2 ]
1

4                                       (26) 

The expression flow rate is= ∫ ⬚
1

0
𝑢(𝑦, 𝑡)𝑑𝑦                  (27) 

The skin friction on the lower plate is = {
𝜕𝑢

𝜕𝑦
+ 𝛽 [

𝜕2𝑢

𝜕𝑦𝜕𝑡
−

𝜕2𝑢

𝜕𝑦2
]}

𝑦=0
                          (28) 

 

https://scienxt.com/


 

           SJMIP 

         Scienxt Journal of Manufacturing and Industrial Production 

 

Scienxt Center of Excellence (P) Ltd                                                                                                     SJMIP ||9  

4. Conclusion: 

In the present paper, we have obtained the exact solution of MHD elastic-viscous fluid flow 

with the angle of inclination and creating sinusoidal disturbances under the influence of a 

magnetic field on the porous boundary. As 𝑚 → 0 and  𝜃 → 0  the results obtained for the 

velocity field agree with that of [25] and [26] respectively. The case of Newtonian fluid can 

be realized as 𝛽 → 0, 𝑘 → ∞, 𝑚 → 0 and 𝜃 → 0. 
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